
 

  

 

 

 

 

 

 
 
 
 
 
 

Introduction 
 

Proteins bind with other molecules to bolster or inhibit biological 
functions.  In all these protein and the binding partner (ligand) 
interaction, usually a few key residues are involved. It is important to 
identify these key sites in order to understand the function of the 
protein. Most of the computational approaches to recognize these 
functional sites in proteins can broadly be classified into sequence or 
structure based methods.  There have been some magnificent works 
[1] in regard to reviewing the existing tools and methods in this field.  
However, there have been a lot of progress and new types of 
methodology developed for protein functional site prediction. In this 
regard, this paper aims to briefly describe some of the recent 
developments in the field of protein functional site prediction for 
structure-based approaches and sequence-and-structure based 
approaches. Firstly, a brief overview of sequence-based approaches is 
presented along with some recent development.  Then, a detailed 
overview on structure-based approaches and sequence-and-structure 
based approaches for protein functional site prediction is presented.  

 
Sequence based Approaches 

 
The main strength of the sequence-based approaches for binding 

site prediction is that these methods have the ability to determine a 
ligand-binding motif in proteins that may not have same overall fold. 
However, if the binding site (pocket) is nonlocal or non-contiguous 
in sequence, motif based approach generally becomes ineffective.  
Homology-based methods require related proteins with significant 
identity to the query protein in the protein data bank (PDB) because 
the conservation of biochemical function drops rapidly for proteins 
sharing < 35-40% sequence  identity  [2].  Various  sequence  based  
 

 
 
 
 
 

 
 
 

approaches have been developed over the years including, but not 
limited to, Conseq [3] Conservation Scores [4], MINER [5-7] and so 
on. Refer to the excellent review on phylogenetic based approaches 
for more details about these methods [8].   

Essentially, for methods based on sequence-based approaches, at 
first, the homologous sequences of a target sequence are collected and 
a multiple sequence alignment (MSA) is constructed. Then, using 
various approaches conserved residues are identified among all the 
sites in the MSA.  

Selection of homologous sequences to a query protein is a critical 
step in all sequence-based and sequence and structure based 
approaches for protein functional site prediction.  Despite the fact, 
this problem has not been sufficiently addressed.  In this regard, how 
to select appropriate homologous sequences for the identification of 
conserved residue is a contentious issue. Some of the recent 
approaches to address this issue are discussed below. 

 
Appropriate Selection of Homologous Sequences   

 
As mentioned earlier, selection of homologous sequences is critical 

step in sequence-based and sequence and structure based approaches 
for protein functional site prediction. It has been empirically shown 
that certain degree of sequence divergence is required in an MSA for 
the identification of functional sites. However, there is no concrete 
objective criterion and selection of sequences for the MSA is 
unavoidably subjective [9]. 

In this regard, Aloy et al. [10] developed an automatic method to 
predict the functional regions of a protein by using some criteria for 
selection of homologous sequences. Essentially, in their method, the 
clustering of the conserved residues on the tertiary structure is 
evaluated. If no cluster is identified, then the MSA is reconstructed by 
removing the distant homologues of the target protein. This process is 
iterated until the cluster of conserved residues is identified.  

Mihalek et al. [11] also proposed ‘residue clustering measure’ to 
indicate the appropriateness of the homologous sequences for 
functional region prediction. This measure essentially quantifies the 
degree of clustering of the evolutionarily important residues in the 
tertiary structure of the protein. The measure assigns greater 
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importance to the clustering of the residues that are far from each 
other on the primary sequence. The usefulness of the measure was 
proved by applying the measure to improve the performance of the 
real valued Evolutionary Trace (rvET) [12]. 

Recently, Nemoto et al. [9] developed a novel index to select the 
appropriate set of sequences for the identification of conserved 
residues, and implemented the index to show the usefulness of the 
index for the prediction of functional regions of a protein. The index 
is called DSPAC index. 

 
DSPAC Index 

 
In order to select the appropriate set of sequences for functional 

regions prediction, Nemoto et al. [9] developed the DSPAC index. 
The DSPAC (Degree of SPatial Auto-Correlation) is quite often used 
in spatial statistics to detect local clusters. The full explanation of 
DSPAC is outside the scope of the review and interested readers are 
requested to refer to Nemoto et al. [9].  

The DSPAC indicates the degree of spatial autocorrelation and is 
used  as an index of the appropriateness of a set of homologous 
sequences. Precisely, a set of homologous sequences of a target protein 
is generated and divided into some subsets. Among the subsets, the 
subset with the maximum DSPAC is chosen.  Finally, the set of 
sequences corresponding to the MSA that has the maximum DSPAC 
is adopted as the most appropriate set of sequences for the function 
region prediction of the query protein. 

The usefulness of the index was demonstrated by improved 
performance of functional region prediction in the FREPS program. 
It has to be noted here that the index for selecting appropriate 
homologous sequences is called DSPAC and the method that uses this 
index is called FREPS. FREPS is discussed in sequence and structure 
based method section. 

Next, we will discuss widely used methodologies and recent 
advances in structure-based approaches for functional site prediction.  

 
Structure based Approaches 

 
Based on the observation of existing protein-ligand complexes, it 

is quite evident that homologous proteins with similar global 
topology often bind similar ligands using a conserved set of residues 
[13]. In this regard, there are various methods that utilize both 
geometric match and evolutionary information to identify binding 
site.  

A number of structure-based approaches for binding site 
prediction have been developed. These methods are broadly classified 
into: geometry based approaches and energetic based approaches. 
Geometry-based approaches identify binding residues by searching for 
pockets/cavities in a protein structure. Energetic-based approaches 
identify binding residues by using various interaction energies. 
Recently, there have also been recent developments of structure 
alignment based methods for functional site prediction.  

 
Structure Alignment based Methods 

 
Due to the availability of large number of solved protein 

structures in databases like Protein Data Bank [14] and development 
of sophisticated protein structure prediction protocols [15,16], it is 
now possible to develop methods based on structure alignment of 
proteins. In this regard, there have been a couple of methods 
developed in this area. These methods may be broadly classified as 

global structure alignment based methods and local structure 
alignment based methods. 

 
Global Structure Alignment based Approaches 

 
FINDSITE [17] is a threading-based approach for binding site 

prediction based on global structure alignment and was developed in 
the Skolnick Lab.  FINDSITE’s spirit is based on the observation, of 
systematic analysis of know protein structures grouped according to 
SCOP [18] classification, that there is a general tendency of certain 
protein folds to bind substrates at a similar location. This observation 
suggests that distantly homologous proteins can have common 
binding sites and if indeed that is the case it should be possible to 
identify ligand-binding sites for not so perfect structure (modeled 
structures). 

Given a query protein, FINDSITE first identifies a group of 
template structures user threading. Essentially, PROSPECTOR_3 
[19] threading algorithm identifies ligand-bound structural templates.  
Also, based on these threading templates, a model of the query 
protein is generated. Then, these holo-templates are superimposed 
onto the predicted target protein structure by TM-align structure 
alignment algorithm. The clustered centers of mass of the ligands 
bound to the threading templates identify putative binding sites and 
the predicted sites are ranked according to the number of templates 
that share a common binding site.  

 
Local structural alignment based Approaches 

 
Local alignment approaches are suited to detect locally conserved 

patterns of functional groups, which often appear in binding sites and 
have significant involvement in ligand binding.  In this regard, 
ProBis[20] enables the local structural alignment of entire protein 
surface structure against a large database of protein structures and 
then detects structurally similar regions in a query protein by mapping 
structural similarity scores on its surface.  

ProBis is a local structure alignment (LSA) based algorithm 
developed at Janezic’s lab to detect locally similar surface patches of 
proteins independent of the protein fold.  The algorithm identifies 
structurally similar sites, whose residues may be scattered in the 
sequence space, but are close together in structure. Such patches are 
often related to ligand binding sites and searching for these sites 
exploits the fact that protein performing similar functions may share 
similar patterns of interactions of binding sites. ProBis uses a graph 
theoretical approach (clique based approach) by constructing protein 
graphs. Clique based algorithms have been previously applied to 
protein side-chain packing problems [21]. 

Initially, protein surface residues are identified by calculating the 
solvent accessible surface atoms of the protein. The surface amino 
acid residues are then assigned to one of the five labels based on the 
physicochemical properties of the functional groups: hydrogen-bond 
donor, hydrogen-bond acceptor, mixed acceptor/donor, aromatic, and 
aliphatic groups. Each functional group is then substituted with one 
labeled point that represents potential interactions of this particular 
functional group with other molecules. Essentially, the vertices 
correspond to the functional groups of surface amino acid residues 
and the distance between pairs of adjacent vertices determines the 
edges.  In this regard, this representation captures both geometric and 
physiochemical properties. Finally, different protein surfaces are 
compared by constructing protein product graphs, followed by a 
search for maximum cliques in these graphs.  These maximum cliques 
in the product graphs correspond to protein surface similarities.  
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The product graph obtained from the sub-graphs is then 
subjected to maximum clique finding algorithm and a maximum 
clique corresponds to a largest common vertex substructure.  
Alignment scores like surface vector angle, RMSD and E-values are 
calculated for each local superimposition. It is important to note that 
each of these pairwise comparisons may result in a number of 
different maximum cliques where clique represents the local structural 
similarities between the compared proteins.  Finally, a search for 
similarities in flexible parts of the two compared proteins is 
conducted (Detail omitted here). 

In essence, ProBiS conducts searches for similar 3D structural 
regions in proteins without reference to known binding sites or co-
crystallized ligands taking into account entire protein surfaces.  

 
Global and Local structure alignment based approaches 

 
COFACTOR [22] is a method that falls in the category of global 

and local structure alignment based approaches. This is a method to 
predict binding site residues in a protein. It starts with a query 
sequence and then a 3D structure model is generated for the query 
sequence using I-TASSER [15] algorithm.  Based on the global 
structural similarity to the query protein using the TM-align [23] 
structure alignment program, template proteins with bound ligands in 
the PDB [14] are collected.  

Meanwhile, the binding pockets of template structures are 
scanned through the query protein structure to identify the best local 
geometric and sequence matches. The binding pose of the ligand in 
the query structure is predicted based on the local alignment of 
predicted and template binding site residues.  

The major difference between COFACTOR and the existing 
methods is the combination of global and local structural 
comparisons for identifying ligand-binding sites.  It generally 
outperforms other cavity-based methods when only low-resolution 
protein models are available because the global topology comparisons 
can reliably identify the correct functional template. Furthermore, for 
proteins that have functional templates with different global topology 
but similar conserved binding pockets, the local structural alignment 
inside COFACTOR helps to recognize the ligand-binding residues 
unlike purely global structural comparison methods like FINDSITE 
[17].  

 
Geometric Based Methods 

 
As discussed earlier, besides the structure alignment based 

methods, there are methods based on geometry. In this section, we 
will review some of the widely used geometric based approaches for 
protein ligand-binding site prediction. 
 

POCKET [24] algorithm introduced the idea of protein-solvent-
protein events as the key concept for identification of binding sites. 
The protein is mapped onto a 3D grid. A grid point is a part of the 
protein if it is within 3A of an atom coordinate; otherwise it is a 
solvent. Next, the x-, y-, and z-axes are scanned for the pockets, which 
are characterized as a sequence of grid points, which start and end 
with the label protein and having a period of solvent grid points in 
between. These sequences are called protein-solvent-protein events 
and only grid points that exceed a threshold of protein-solvent-
protein events are retained for the final pocket prediction. Here we 
discuss, some of the ligand binding site prediction methods that 

analyze the protein surface for pockets. The ligand binding site is 
usually in the largest pocket. 
 

LIGSITE [25] is a method for predicting protein binding sites 
using the Connolly Surface and conservation. LIGSITE extends 
POCKET by scanning along the four cubic diagonals in addition to 
the x, y, and z directions. Furthermore, two extensions were 
introduced to LIGSITE: First, instead of capturing protein-solvent-
protein events, the more accurate surface-solvent-surface events using 
the protein’s Connolly surface is captured and this extension is called 
LIGSITEcs (cs= Connolly surface). Second, the pockets identified by 
the surface-solvent-surface events are re-ranked by the degree of 
conservation of the involved surface residues and this extension is 
called LIGSITEcsc [26] (csc=Connolly surface and conservation).  

LIGSITEcsc is an extension of LIGSITE.  Instead of defining 
protein-solvent-protein events on the basis of atom coordinates, it 
uses the Connolly surface and defines surface-solvent-surface events. 
The steps in the algorithm are as follows. First, the protein is 
projected onto a 3D grid. For the grid, a step size of 1.0Å is used. 
Then, the grid points are labeled as protein, surface, or solvent based 
on following rules:  

 
i) A grid point is a protein if there is at least one atom within 1.6Å. 
ii) Solvent excluded surface is calculated using the Connolly 

algorithm and the surface vertices’ coordinates are stored. A grid 
point is marked as surface if a surface vertex is within 1.0Å.  

iii) All other grid points are labeled as solvent.  
 
Finally, a sequence of grid points, which starts and ends with 

surface grid points and which has solvent grid points in between is 
called surface-solvent-surface event. LIGSITEcsc scans the x, y, and z 
directions along with four cubic diagonals for such surface-solvent-
surface events. If the number of these types of events exceeds 6, the 
grid is marked as ‘pocket’.  Finally, if a pocket grid point is within 
3.0Å to a pocket grid point cluster, it is added to the cluster or else it 
is considered a new cluster. Next, the clusters are ranked by the 
number of grid points in them. The top three clusters are retained and 
their centers of mass are used to represent the predicted ‘pocket sites’.  
Finally, the top 3 pocket sites are re-ranked according to conservation 
score. The conservation score of the involved surface residues is the 
average conservation score of all residues within a sphere of 8A radius 
from the center of the mass of the cluster.  
 

The SURFNET [27] algorithm identifies the clefts on a protein 
surface by placing a sphere between all pairs of atoms such that sphere 
just touches each atom and is between some predefined minimum and 
maximum radius. 

Each sphere is reduced in size if any other atoms intersect it until: 
i) it intersects with no further atoms or ii) its radius drops below the 
minimum size. If it intersects with no further atoms the sphere is 
retained else the sphere is discarded. Once, the clefts on the surface 
have been filled by spheres, it is possible to cluster the spheres into 
separate regions and calculate a volume for each cleft. The approach is 
particularly useful for locating binding sites in proteins.  

 
Energetic-based Approaches 

 
As discussed earlier, besides geometric based approaches, there are 

a number of energetic based approaches. Some of the energetic-based 
approaches are discussed below. 
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Q-SiteFinder [28] is a ligand binding site prediction tool. It is an 
energetic based approach to find ligand binding pockets. In Q-
SiteFinder, the protein surface is coated with a layer of methyl (-
CH3) probes to calculate van der Waals interaction energies between 
the protein and probes. The probes with most favorable interaction 
energies are retained. The probe coordinates are saved and the 
coordinates are rotated back to match the original orientation of the 
protein.  

Individual probe coordinates are then clustered according to the 
spatial proximity and the total interaction energies of probes within 
each cluster is calculated. The probe clusters are ranked according to 
their total interaction energies and the cluster with the most favorable 
is identified as the binding sites. 

A recent version of Q-SiteFinder [29] achieves a higher success 
rate by using a better probe distribution technique and more suitable 
force field parameters to calculate interaction energies.  
 

Pocket-Finder is a tool for identifying protein-ligand binding 
sites. Pocket-Finder implements LIGSITE. Like, LIGSITE Pocket-
Finder measures the extent to which each grid point is buried in the 
protein. Each grid point has seven scanning lines passing through it 
(in the x, y and z directions plus the four cubic diagonals). The grid 
points are initially set to zero. These points can have a value from 
zero (not part of a pocket) to seven (deep in the cavity) protein-site-
protein event. Details are omitted here.  Using a grid resolution of 
0.9Å and a probe radius of 1.6Å and the threshold number of PSP 
events of 5, pockets are defined by cubes of retained grid points.  

The major difference between Pocket-Finder and Q-SiteFinder is 
that in clustering in Pocket-Finder the sites produced by the Pocket-
Finder are ranked according to the number of probes in the site rather 
than by probe energy. Another difference between Q-SiteFinder and 
Pocket-Finder is the value of parameter for estimation of site volume. 
For Q-SiteFinder a value of 5.0Å is used and for Pocket-Finder a 
value of 3.0Å is used. These values reflect the fact that the probe site 
identified in Q-SiteFinder approach the protein within van der Waals 
(vdW) contact whereas sites approach the vdW surface of proteins in 
terms of Pocket-Finder. 

 
Fuzzy Oil Drop based Approach (Discuss more about FOD 
algorithm) 

 
Various methods based on structural analysis coupled with surface 

hydrophobicity have been used to identify protein functional sites 
[30]. In this regard, Brylinski et al. [31] developed a method for 
protein functional site prediction based on the Fuzzy Oil Drop 
Model (FOD).  The Fuzzy Oil Drop (FOD) model is based on an 
external hydrophobic force field.  

The FOD hydrophobic force field is based on the assumption 
that the theoretical hydrophobicity distribution in proteins is 
represented by the 3-D Gaussian function. For this reason, these 
values can be considered equal to zero. The size of the molecule is 

expressed by the triple σx, σy, σz, which is calculated for each 
molecule individually provided that the orientation of the molecule 
with the longest possible inter-effective atoms distance is determined 

according to the appropriate coordinate system axis. The σ values are 
calculated as the 1/3 of the longest distance between two effective 
atoms calculated along each axis. The value of the Gauss function at 
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any point of protein body is treated as the idealized hydrophobic 
density defining the hydrophobic core. 

The idealized hydrophobicity at any point of the “fuzzy oil drop” 
can be calculated according to the Gauss function for the molecule 
located with its geometric center as the origin of the coordinate 
system. 

The second component of this force field is an observed 
hydrophobicity distribution formed by the side chains of a protein 
molecule [32]. The scoring function is based on the difference 
between the theoretical and empirical distributions of hydrophobicity 
that expresses the irregularity of hydrophobic core construction. The 
maxima of the difference recognize the residues representing the 
hydrophobicity deficiency, which are normally function-related. 

Essentially, the difference between the theoretical (expected) 
hydrophobicity and the observed values of hydrophobicity is used to 
characterize the functional sites.  See [31] for the details. The maxima 
of the difference recognizes the residues representing the 
hydrophobicity deficiency, which in turn, points out to the structural 
irregularity that is usually in a function related area.  

According to FOD, the hydrophobic residues tend to be placed in 
the central part of the protein molecule while hydrophilic residues on 
the protein’s surface [33].  

This method to predict functional sites is based on the 
observation that there is a high discrepancy between observed and 
theoretical hydrophobicities within FOD in the area of the binding 
sites.  

The usefulness of the method for protein binding site detection 
was verified by comparing the method with SuMo [34] and ProFunc 
[35].  
 

FTSite algorithm [36] is developed at Vajda Laboratory at 
Boston University and is an energy-based method. This method is 
mainly used for accurate detection of ligand binding sites on unbound 
protein structures. This method does not rely on any evolutionary or 
statistical information. It is based on experimental evidence that 
ligand-binding sites also bind small organic molecules of various 
shapes and polarity, as observed by Nucleic Magnetic Resonance 
(NMR) [37].  Based on this assumption, FTSite is based on a solvent 
mapping algorithm [38] which places each of 16 different small 
molecular probes on a dense grid around the protein and finds 
favorable positions using empirical free energy function. Then, for 
each probe type, the individual probes are clustered and the clusters 
are ranked based on the average free energy.  

Subsequently, consensus clusters are identified as sites in which 
different probe clusters overlap. The consensus clusters are ranked 
based on the total number of non-bonded interactions between the 
protein and all probes in the cluster.  The consensus cluster with the 
highest number of contacts is ranked first whereby nearby consensus 
clusters are also joined with the cluster. Finally, the amino acids in 
contact with the probes of the newly defined cluster are predicted to 
be the top rank ligand-binding site.  The stark difference of FTSite 
compared with other energy-based methods is that it uses multiple 
molecular probes rather than a single probe. 

 
Sequence-and-Structure based Approach 

 
As discussed above, there have been myriad of approaches to 

predict protein funcationl region based on sequence properties that 
have largely exploited sequence conservation or to accept fewer 
mutations relative to the overall protein. On the other hand, there are 
numerous approaches based on structural properties that have used 

geometric and energetic properties.  In this regard, there have been 
various approaches to combine sequence and structure-based feature 
to improve protein functional site prediction. One of the seminal 
methods in this category is Evolutionary Trace[39]. 

 

In this regard, ConCavity [40] falls in the type of approach that 
tries to marry these two distinguishing approaches by integrating 
sequence conservation with structural properties to predict protein 
ligand binding sites. ConCavity developed at Singh’s lab in Princeton 
is a protein ligand binding site prediction algorithm that integrates 
evolutionary sequence conservation with structure-based methods for 
identifying protein surface cavities.  

Initially, a grid of points surrounding the protein surface is scored 
by combining the output of a structure based pocket finding 
algorithm, mainly, LIGSITE[25], SURFNET [27] or PocketFinder 
[28] with the sequence conservation values of nearby residues. 
Secondly, coherent pockets are extracted from the grid using 3D 
shape analysis algorithm to ensure that the predicted pockets have 
reasonable shapes and volumes. In the final step, the residues are 
mapped by assigning high scores to residues near high scoring pocket 
grid points. In essence, ConCavity algorithm consists of three major 
steps: grid creation, pocket extraction, and residue mapping.  

 
1) Grid Creation 

Grid creation is similar to other grid creation ligand binding site 
prediction approaches like POCKET [24] and LIGSITE. The 
structural and evolutionary properties of a given protein are used to 
create a regular 3D grid surrounding the protein in which the score 
associated with each grid point represents an estimated likelihood that 
it overlaps with a bound ligand atom.  

Major difference between other grid based approaches and 
ConCavity is that ConCavity integrates evolutionary information 
directly into the grid creation step. 

 
2) Pocket Extraction 

The second step is to cluster groups of contiguous, high scoring 
grid points into pockets.  

 
3) Mapping 

Mapping residue is the third step in the pipeline and it uses the 
extracted set of pockets to generate ligand-binding predictions for 
residues.  

In essence, ConCavity uses the grid creation methods of LIGSITE 
[25], SURFNET [27] and PocketFinder [28]. In addition to that, 
the evolutionary information is integrated in the grid creation process 
by weighing the ‘votes’ as the grid is created by an estimate of 
sequence conservation of the residue associated with the atoms that 
generate the votes. The conservation scores are calculated by the 
Jensen-Shannon divergence.  

Comparison of ConCavity to several methods for ligand binding 
site prediction shows that ConCavity outperforms many of the 
existing methods for ligand binding site prediction. 
 

ConSurf [41] is a protein functional site prediction tool 
developed at Ben-Tal’s Lab.  ConSurf uses sequence of the query 
protein if the query is a sequence and it can also take 3D structure as 
an input and in this case, the sequence corresponding to the structure 
is extracted. ConSurf is also explained in detail in the following book 
chapter [8]. 
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Given a sequence, initially, ConSurf searches for homologous 
sequences. As discussed earlier, selection of homologous sequence is 
subjective so ConSurf offers various choices for the uses. A MSA of 
the collected sequences is performed by MAFFT [42]or other 
methods and a phylogenetic tree is constructed based on the MSA. 
Finally, position specific conservation scores are calculated using the 
Rate4Site algorithm [43]. If the input is sequence, ConSurf projects 
the conservation grades on a related structure and if the input is a 
structure, it projects the conservation grades on the provided 
structure.  

LIGSITEcsc [26] can also be classified as the method based on 
both sequence and structural features. However, strictly speaking as 
LIGSITEcsc only uses evolutionary conservation in a post-processing 
step to re-rank, hence we discussed LIGSITEcsc in the structure-based 
ligand site prediction section.  
 

The SURFNET-ConSurf [44] is a method for identifying ligand 
binding sites in proteins and falls on the category of the methods 
which try to marry structural properties with sequence conservation. 
In the first stage SURFNET [27]  program identifies clefts in the 
protein surface that are potential binding sites. In the second stage, 
these clefts in the protein surface are trimmed in size by cutting away 
regions distant from highly conserved residues using ConSurf [45].  

The SURFNET [27] algorithm identifies the clefts on a protein 
surface by placing a sphere between all pairs of atoms such that sphere 
just touches each atom and is between some predefined minimum and 
maximum radius. 

The second part involves discarding the spheres that are distant 
from highly conserved residues. The residue conservation scores are 
obtained from ConSurf-HSSP database version 1 [46], which 
provides estimates for the rate of evolution of each amino acid in a 
PDB structure. For details of the ConSurf, see [45] or review paper 
[8]. While discarding the spheres, those spheres that are within a 
certain distance of any atom of the highly conserved residues are kept, 
and those that are not are discarded from the sphere list, thus 
reducing the original cleft volume. Two parameters: maximum 
allowed distance between the atom and the sphere and the minimum 
conservation score cutoff are optimized using calibration and the 
value of these parameters are chosen to be 3.5Å and a ConSurf cutoff 
of 8.  

This method was tested on a set of 244 proteins and in 75% of 
the proteins the ligand -binding pocket was identified correctly. It 
should be noteworthy that even though for a few cases the ligand 
binding sites that were identified by SURFNET were totally lost after 
the conservation filtering stage, this method proves the concept that a 
simple combination of conservation and binding site volume provides 
a reasonable improvement in binding site prediction. 
 

Functional Region Prediction of a protein by Spatial statistics 
(FREPS) [9] is a method  to predict functional regions of a protein 
by using structure and homologous sequences of a target protein. The 
basic strategy of the method is to detect spatial clusters of conserved 
residues on the protein structure. 

The method utilizes spatial statistics, which takes into account 
spatial position of the data.  In addition, as discussed earlier, a novel 
DSPAC index is used to select the appropriate set of sequences.  

Based on two assumptions, viz. i) most of the functional regions 
of proteins are exposed or at least semi-buried on the molecular 
surface and ii) the amino acid residues conserved among homologues 
are abundant at the functional regions, due to functional constraints, 

FREPS identifies functional regions of a protein by examining the 
cluster of conserved residues on the protein surface with spatial 
statistics techniques. Essentially, a modified Local Moran’s I score 
[47] called as Local Moran’s I by using conservation score (LMIC) is 
implemented to detect clusters of conserved residues. Interested 
readers are advised to refer to the FREPS paper [9]  for the details. 

 
Meta Server Approaches 
 

There are some approaches where existing algorithms are 
combined to get the consensus among these algorithms. One of them 
is MetaPocket 2.0 [48].  MetaPocket 2.0 is a meta-server which seeks 
consensus among 4 different methods and reaches 80% accuracy for 
the unbound LIGSITEcsc  test set for prediction of ligand binding 
sites. MetaPocket combines together four protein binding site 
predictors and proposes a meta-method to predict ligand-binding 
sites. The 4 combined methods are: LIGSITEcsc [26], PASS [49], Q-
SiteFinder [28], and SURFNET [27].  

In essence, for each protein structure, four of the approaches 
mentioned above are used to identify pocket sites.  It is not readily 
possible to combine or compare the results of these 4 methods as the 
pocket sites identified as these methods have different ranking scoring 
functions. Hence, in order to do that, a z-score is calculated separately 
for each site in different methods. Then, only the top three pocket 
sites in each method are taken into further consideration.  

Hence, a total of 12 pocket sites (3 from each of the 4 methods) 
are obtained and these sites are clustered using hierarchical clustering 
algorithm. Probes within a certain distance threshold (8Å ) are 
grouped together as a cluster. Then, each cluster is ranked based on a 
scoring function that is the sum of the z-scores of the pocket sites in a 
cluster.  

Based on the benchmarking on various datasets 48 
unbound/bound and 210 bound proteins, MetaPocket achieved 
slightly better results than the other approaches and correctly predicts 
the ligand the best overall success rate for all the top three predictions 
compared to each of the individual methods.  

 
Availability of the methods 

 
In this section, we will describe the availability of these methods. 

Some methods are freely available for academic users as stand-alone 
version or some as web-servers and some as both. Table 1 lists the 
methods, their category, the URL where these methods can be 
accessed at and some important features of for the protein functional 
site prediction methods discussed in the paper. 

 
Summary and Outlook 

 
There are a myriad of approaches for protein functional site 

prediction. Most of these methods can be broadly classified into 
sequence-based, structure-based or sequence and structure based 
approaches. Here, we mostly discussed sequence-and-structure based 
approaches. As discussed earlier, protein functional site prediction is a 
very hot topic in structural bioinformatics and we will continually see 
a lot of algorithms developed in the area. Especially, we might see 
more development of meta-server type of approach combining more 
than one methods and methods that combine both sequence and 
structure features.  Furthermore, as protein structure prediction 
protocols are becoming mature, we will also see method development 
for prediction of protein functional sites for ‘modeled proteins’.  
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Moreover, most of these approaches use conservation as one of 
the important factor in determining the functional sites but these 
properties might be conserved because of the structural as well as 
functional reasons. Hence, methods like [50,51] to distinguish sites 
that are conserved just due to structural reasons from the sites that are 
conserved due to functional reasons are needed to be developed in 
order to reduce false positives. 
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